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Identifying the learnable is a fundamental goal of machine learn-
ing. To achieve this goal, one should first choose a mathemati-
cal framework that allows a formal treatment of learnability. This 

framework should be rich enough to capture a wide variety of learn-
ing problems. Then, one should find concrete ways to characterize 
learnability within this framework.

This paradigm has been successfully applied in many contexts 
of machine learning. In this work, however, we show that this par-
adigm fails in a well studied learning model. We exhibit a simple 
problem where learnability cannot be decided using the standard 
axioms of mathematics (that is, of Zermelo–Fraenkel set theory 
with the axiom of choice, or ZFC set theory). We deduce that there 
is no dimension-like quantity that characterizes learnability in  
full generality.

Standard learning models
Machine learning deals with various kinds of statistical problems, 
such as pattern recognition, regression and clustering. These prob-
lems share important properties in common. Perhaps the most 
basic similarity is in their goal, which can be roughly stated as:

Approximate a target concept given a bounded amount of data 
about it.

Another similarity lies in the ideas and techniques that are used 
to study them. One example is the notion of generalization, which 
quantifies the quality of the approximation of the target concept. 
Other notable examples include algorithmic principles such as 
ensemble methods, which combine multiple algorithms in ways 
that improve on their individual performances, and optimization 
techniques such as gradient descent.

The affinity between these learning contexts leads to a pursuit of 
a unified theory. Such a theory would expose common structures, 
and enable a fruitful flow of ideas and techniques between the dif-
ferent contexts as well as into new learning problems that may arise 
in the future.

A unified theory exists in the context of classification problems, 
which includes problems like speech and spam recognition. This 
theory is called probably approximately correct (PAC) learning1 or 
Vapnik–Chervonenkis (VC) theory2,3. A profound discovery within 
this theory, which is known as the ‘fundamental theorem of PAC 

learning’, is the characterization of PAC learnability in terms of VC 
dimension2,4. This result provides tight upper and lower bounds 
on the statistical complexity—the number of examples needed for 
learning—of arbitrary binary classification problems.

This characterization is remarkable in that it reduces the notion 
of PAC learnability to a simple combinatorial parameter. In some 
cases, it can even provide insights for designing learning algorithms. 
For example, it is useful in quantifying tradeoffs between expressiv-
ity and generalization capabilities.

Wide extensions of PAC learnability include Vapnik’s statisti-
cal learning setting5,6 and the equivalent general learning setting 
by Shalev-Shwartz and colleagues7. These rich frameworks capture 
many well studied settings, such as binary classification, multi-
class classification, regression as well as some clustering problems. 
The existence of a VC dimension-like parameter that characterizes 
learnability in these frameworks has attracted considerable atten-
tion (see, for example, refs. 8–11).

A corollary of our results is that there is no VC dimension-like 
parameter that generally characterizes learnability. We offer a for-
mal definition of the term ‘dimension’. All notions of dimension 
that have been proposed in statistical learning comply with this 
definition. We show that there can be no such notion of dimen-
sion whose finiteness characterizes learnability in general models of 
learning. This is discussed in more detail in the section ‘Dimensions 
for learning’.

Our focus is on a specific learning problem we call ‘estimating 
the maximum’ (EMX). The EMX problem belongs to both models 
discussed above. Here is a motivating example. Imagine a website 
that is being visited by a variety of users. Denote by X the set of all 
potential visitors to the website. The owner of the website wishes to 
post ads on it. The posted ads are to be chosen from a given pool 
of ads. Each ad A in the pool targets a certain population of users 
FA ⊆  X. For example, if A is a sports ad then FA is the collection of 
sports fans. The goal is to place an ad whose target population visits 
the site most frequently. The challenge is that it is not known in 
advance which visitors are to visit the site.

More formally, we assume access to a training sample of visi-
tors drawn from an (unknown) distribution P. The collection of 
ads corresponds to the family of sets F  =  {FA : A is an ad in the 
pool}. The ad problem above becomes an instance of the following  
EMX problem:
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Given a family F  of subsets of some domain X, find a set in F  
whose measure with respect to an unknown probability distri-
bution P is close to maximal. This should be done based on a 
finite sample generated i.i.d. from P.

For more details and definitions, see section ‘Estimating the 
maximum’.

independence of learnability
Our main conclusion is rather surprising. We describe a simple 
family of sets so that its EMX learnability cannot be proved or 
disproved. Namely, deciding whether or not the EMX problem is 
solvable over this family is independent of the standard axioms of 
mathematics.

Our proof utilizes one of the most revolutionary mathematical 
discoveries in the past century: Gödel’s incompleteness theorems. 
Roughly speaking, they state that there are mathematical ques-
tions that cannot be resolved. Theorems stating the impossibility of 
resolving mathematical questions are called independence results.

The family of sets F * we consider is the family of all finite sub-
sets of the interval [0, 1]. The class of probability distributions P* we 
consider is the class of all distributions over [0, 1] with finite support.

Theorem. The EMX learnability of F * with respect to P* is independ-
ent of the ZFC axioms.

In other words, we are faced with the following scenario. There 
is an unknown probability distribution P over some finite subset of 
the interval [0, 1]. We get to see m i.i.d. (independent and identi-
cally distributed) samples from P for m of our choice. We then need 
to find a finite subset of [0, 1] whose P-measure is at least 2/3. The 
theorem says that the standard axioms of mathematics cannot be 
used to prove that we can solve this problem, nor can they be used 
to prove that we cannot solve this problem.

How can one prove an independence result? We briefly describe 
the main idea behind forcing, which is the tool Cohen12,13 developed 
to prove independence (see also refs. 14,15). To prove that a statement 
T is independent of given axioms A, one constructs two ‘worlds’ (that 
is, two models of set theory). In both worlds the axioms A hold, but 
in one world T is true and in the second T is false. These two worlds 
manifest that both T and its negation ¬ T are consistent with axioms A.

Gödel16 and Cohen12,13 proved the independence of the continuum 
hypothesis. The continuum hypothesis states that there are no sets 
whose cardinality lies strictly between the cardinalities of the integers 
and the continuum. By now, we know of quite a few independence 
results, mostly for set theoretic questions like the continuum hypoth-
esis, but also for results in algebra, analysis, infinite combinatorics 
and more. Machine learning, so far, has escaped this fate.

Coming back to learnability, our arguments yield that there are 
two worlds that are consistent with the standard axioms of math-
ematics, but in one world F * is EMX-learnable and in the other 
world it is not. Our approach is to show that the EMX learnability 
of F * is captured by the cardinality of the continuum. In a nutshell, 
the class F * is EMX-learnable if and only if there are only finitely 
many distinct cardinalities in the gap between the integers and the 
continuum. The latter is a variant of the continuum hypothesis that 
is known to be independent of ZFC. For more details, see section 
‘Monotone compressions and cardinalities’.

Learning and compression
Learning and compression are known to be deeply related. The 
learning–compression relationship is central and fruitful in machine 
learning (see refs. 17–20 and references within).

A central concept in our analysis is a notion of compression that 
we term a ‘monotone compression scheme’. We show that, for classes 
satisfying certain closure properties, the existence of monotone  

compression is equivalent to EMX learnability (Lemma 1). This 
equivalence allows to reduce EMX learnability to the following col-
laborative two-player game.

The finite superset reconstruction game. There are two players: Alice 
(‘the compressor’) and Bob (‘the reconstructor’). Alice gets as input a 
finite set S ⊆ X. She sends Bob a subset S′ ⊆ S according to a pre-agreed 
strategy. Bob then outputs a finite set η(S′) ⊆ X. Their goal is to find a 
strategy for which S ⊆ η(S′) for every S.

It may be helpful to think of the players as abstractions of two 
different functionalities of a learning algorithm. Alice is the part of 
the algorithm that gets a sample of points as input, and needs to 
carefully choose a ‘meaningful’ subset of the points. Bob is the part 
of the learning algorithm that takes the compressed data and trans-
lates it to a decision.

Alice can, of course, always send S′  =  S to Bob, which he recon-
structs to η(S′ ) =  S. We focus on the following question:

Can Alice send Bob strict subsets?

It turns out that this depends on the cardinality of X. For example, 
if X is finite then Alice can send the empty set ∅  to Bob, which Bob 
reconstructs to the finite set η(∅ ) =  X. A more interesting example 
is when N=X . In this case Alice can send the maximal element in 
her input xmax =  max S to Bob, which Bob successfully reconstructs 
to the interval {0, 1, … , xmax}. Alice can send a single point to Bob, 
and they still achieve their goal.

What about the case when X is uncountable? In the section 
‘Monotone compressions and cardinalities’ we show that the param-
eters in an optimal strategy for the game over X are captured by the 
cardinality of X.

We are now able to see the high level structure of the proof. In the 
learning framework we consider there is an equivalence between 
the three notions: learnability, compression and cardinalities. Many 
statements concerning cardinalities cannot be proved nor refuted. 
Learnability, therefore, sometimes shares this fate.

Dimensions for learning
We now present a more concrete application. As discussed above, a 
fundamental result of statistical learning theory is the characteriza-
tion of PAC learnability in terms of VC dimension2,4. Variants of the 
VC dimension similarly characterize other natural learning set-ups. 
The Natarajan and Graph dimensions characterize multi-class clas-
sificiation when the number of classes is small. For learning real 
valued functions (in noisy or agnostic settings), the fat-shattering 
dimension provides a similar characterization21–23. The aforemen-
tioned dimensions actually provide useful and often sharp bounds 
on the sample complexity needed for learning4,8,24.

We show that there does not exist a VC dimension-like param-
eter that characterizes EMX learnability. In the following we provide 
a high-level description of the main ideas (for more details see sec-
tion ‘No general dimension for learning’). First-order logic allows 
us to formally define a notion of ‘dimension’ that we can investigate. 
Our definition says that a dimension FD( ) of a family of sets F  is 
a quantity that can be defined by asking questions concerning any 
finite number of sets in F  and points in X. All notions of dimension 
mentioned above satisfy this definition. Using this definition, we 
show that there is no dimension such that FD( ) is finite if and only 
if F  is learnable in the EMX setting (unless the standard axioms of 
mathematics are inconsistent).

Learnability and compression
In this section we describe the equivalence between learning and com-
pression that is central in our work. We start by providing the relevant 
background and definitions, and then state the equivalence (Lemma 1).
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Estimating the maximum. The EMX problem was (implicitly) 
introduced in ref. 25 in the context of proper learning when the 
labelling rule is known to the learner. The definition of the EMX 
problem is similar to that of PAC learning. Let X be some domain 
set, and let F  be a family of functions from X to {0, 1} (we often 
think of each function F∈f  as a subset of X and vice versa). Given a 
sample S of elements drawn i.i.d. from some unknown distribution 
P over X, the EMX problem is about finding a function f ∈  F  that 
approximately maximizes the expectation E f( )P  with respect to P.

Remark. To make sense of E f( )P , we need f to be measurable with 
respect to P. To solve this measurability issue, we make the following 
assumption: All distributions in this text are finitely supported over 
the σ-algebra of all subsets of X.

A learner for the family F  in our setting is a function 
FN⋃ →∈G X: k

k  that takes a finite sequence of points as input, 
and outputs an element of F . It is important to restrict learners 
to being proper (that is, to output functions in F ), since other-
wise the algorithm may simply output the all-ones function, which 
trivially maximizes this expectation. The goal of an EMX learner 
is to find a function in F  whose expectation is approximately 

FOpt ( )P
 =  

F
E∈ hsup ( )h P . This is captured by the following definition.

Definition 1 (EMX learner). A learner G is an δϵ( , )-EMX learner 
for F  if for some integer δ= ϵd d( , ),

FE δ≤ −ϵ ≤
~

G SPr [ ( ( )) Opt ( ) ]
S P P Pd

for every (finitely supported) probability distribution P over X.

Monotone compression schemes. A standard notion of compres-
sion in machine learning is ‘sample compression schemes’18. Several 
natural learning algorithms, such as support vector machines, can 
be viewed as implementing sample compression schemes. The exis-
tence of compression schemes implies learnability18. The reverse 
direction is also true. Learnable classes have compression-based 
learners17,19.

Here we define a monotone version of compression schemes. 
Before reading the definition below it is worth recalling the ‘finite 
superset reconstruction game’ introduced in the section ‘Learning 
and compression’, and the interpretation of the two players as two 
components of a learning algorithm.

For integers d ≤  m, an m →  d monotone compression scheme 
corresponds to a strategy that allows playing the game where Alice 
gets a set x1, … , xm as input and sends to Bob a subset …x x, ,i id1

 of 
size d. The intuition is that after observing m points that belong to 
some unknown set F∈h , there is a way to choose d of the points so 
that the reconstruction η of the d points contains all the m observed 
examples.

Definition 2 (monotone compression schemes). An m →  d mono-
tone compression scheme for F  is a function Fη →X: d  such that for 
every F∈h  and x1, … , xm ∈  h, there exist i1, …  id so that

η… ⊆ …x x x x{ , , } [( , )]m i i1 d1

The function η is called the reconstruction function.

EMX learnability and compression. Here we state and prove the 
equivalence between learning and compression. Our focus is on 
families satisfying the following closure property.

Definition 3 (union bounded). A family F  of sets is union bounded 
if for every F∈h h,1 2  there exists F∈h3  such that h1 ∪  h2 ⊆  h3.

Every class that is closed under finite unions is also union 
bounded. However, many natural classes that are not closed under 
unions are union bounded, like the class of all convex polygons.

The learnability–compression connection is summarized as  
follows.

Lemma 1. The following are equivalent for a union bounded family 
F  of finite sets:

•	 Weak learnability The family F  is (1/3, 1/3)-EMX learnable.
•	 Weak compressibility There exists an (m +  1) →  m monotone 

compression scheme for F  for some N∈m .

The lemma shows that, for some classes, learnability is equiva-
lent to the weakest type of compression: removing just a single point 
from the input set.

Proof idea. We first explain why weak compressibility implies 
learnability. Assume we have an (m +  1) →  m monotone compres-
sion scheme for F . The argument consists of two parts: ‘boosting’ 
and ‘compression ⇒  generalization’. In the boosting part, we show 
how to build an M →  m monotone compression scheme for all 
M >  m. The second part is standard. An M →  m compression for 
large enough M implies learnability18.

We now explain how to achieve boosting. Start by building an 
(m +  2) →  m monotone compression scheme. Let S =  (x1, … , xm+2) 
be a collection of m +  2 points that belong to some set in F . To 
compress S to a collection of m points, apply the given (m +  1) →  m 
compression ‘twice’ as follows. First, compress the first m +  1 points 
x1, … , xm+1 to a collection …x x, ,i im1

 of m points. Then, compress 
the m +  1 points … +x x x, , ,i i m 2m1

 to a set of m points …x x, ,j jm1
. This 

collection of m points is the compression of S. The reconstruction 
function is obtained by applying the given reconstruction function 
‘twice’ as follows. Given a collection S′  of m points, apply the given 
reconstruction once to get η(S′ ). Apply η a second time; let R be a 
set in F  that contains S′  and all sets of the form η(T) for a collec-
tion T of m points that belong to η(S′ ). The set R exists since F  is 
union bounded and since η(S′ ) is finite. The reconstruction of S′  is 
defined to be R.

It is easy to verify that the above construction yields a (m +  2) →  m 
monotone compression scheme. By repeating this process we get an 
M →  m compression for all M >  m.

It remains to explain why learnability implies compressibility. We 
explain how to transform a learner G with sample size d =  d(1/3, 
1/3) into an (m +  1) →  m monotone compression scheme for 

= ⌈ ∕ ⌉m d3 2 .
We first define the reconstruction function η and then  

explain how to compress a given sample. Given S′  of size m, let  
η(S′ ) be a set in F  that contains S′  and also all sets of the form G(T) 
for a collection T of d points that belong to S′  (we allow repetitions 
in T).

We now explain how to compress a collection S of m +  1 points 
that belong to some set in F . It suffices to prove that there is a sub-
set S′  of S of size m so that all points in S belong to η(S′ ). Assume 
towards a contradiction that there is no such S′ . This means that 
for each x in S, for every collection T of d points in S that does not 
contain x we have ∉x G T( ). Now, let P be the uniform distribution 
on S. On the one hand, F =Opt ( ) 1P

. On the other hand, for every 
collection T of d points from S we have E G T( ( ))P  ≤  <

+
d

m 1
2
3
. This 

contradicts the fact that G is a learner.

Monotone compressions and cardinalities
We have shown that EMX learnability is equivalent to monotone 
compression. To complete the argument, it remains to explain the 
connection between monotone compressions and cardinalities.

We start with a brief overview of cardinal numbers. Cardinals 
are used to measure the size of sets. The cardinality of the natural 
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numbers is denoted by ℵ 0. Cantor’s famous diagonalization argu-
ment shows that the cardinality of the continuum is strictly larger 
than ℵ 0. In particular, there are cardinalities that are larger than ℵ 0.  
The smallest cardinal that is larger than ℵ 0 is denoted by ℵ 1. The 
continuum hypothesis states that the cardinality of continuum is ℵ 1. 
Having defined ℵ 0 and ℵ 1, we can keep going and define ℵ k+1 as the 
smallest cardinal that is larger than ℵ k.

The key part that remains is to relate the cardinality of a set X to 
the size of a monotone compression of the following family of sets:

F = ⊆h X{ : h is a finite set}X
fin

Theorem 1. For every integer k ≥  0 and every domain set X, the cardi-
nality of X is at most ℵk if and only if the class F X

fin has a (k +  2) → (k + 1) 
monotone compression scheme.

Before proving Theorem 1, let us explain how it implies our main 
theorem, that the EMX learnability of F F=* fin

[0,1] is independent 
of the ZFC axioms. As discussed in the section ‘Independence and 
learnability’, it is known that the continuum hypothesis is inde-
pendent of the ZFC axioms (see, for example, chapter 15 of ref. 14). 
There are two models of set theory (‘worlds’) that are consistent 
with the axioms of ZFC:
 1. In one model, the continuum hypothesis is true; the cardinal-

ity of [0, 1] is ℵ 1.
 2. In the second model, the continuum hypothesis is far from 

being true; the cardinality of [0, 1] is larger than ℵ k for all 
integers k.

In the first model, F * is learnable since it has a 3 →  2 monotone 
sample compression scheme. In the second model, F * is not learn-
able since it has no monotone sample compression scheme. We see 
that the learnability of F * cannot be proved nor refuted (unless the 
axioms lead to a contradiction).

Proof of Theorem 1. The monotone compression scheme for F X
fin when 

the cardinality of X is small extends the strategy for the finite superset 
reconstruction game from the section ‘Learning and compression’.

Let X be a set of cardinality ℵ k. Given a set S ⊆  X of size k +  2, com-
press it as follows. Let ≺ k be a well-ordering of X of order type ωk.  
Let xk be the ≺ k maximal element of S. The key property of ωk is that 
the cardinality of the initial segment Ik :=  ∈ ≺y X y x{ : }k k  is at most ℵ 
k−1 (see, for example, ref. 14). Let ≺ k−1 be a well-ordering of Ik of order 
type ωk−1. Let xk−1 be the ≺ k−1 maximal element of S\{xk}. The cardi-
nality of the initial segment −Ik 1 :=  ∈ ≺ − −y I y x{ : }k k k1 1  is at most ℵ k−2. 
Continue in a similar fashion to get xk−2, … , x1 and the correspond-
ing initial segments Ik−2, … , I1. The initial segment I1 is countable. 
Let x0 be the ≺ 1 maximal element between the two elements of S\{xk, 
xk−1, … , x1}. The initial segment ∈ ≺y I y x{ : }1 1 0  is finite, and it con-
tains the only element in S\{xk, xk−1, … , x0}. The final compression of 
S is to S′  =  {xk, … , x0}. The decompression of S′  reconstructs xk, … , 
x0 and outputs S′  union the finite set ∈ ≺y I y x{ : }1 1 0 .

It remains to explain how to use a monotone compression for 
F X

fin to deduce that the cardinality of X is small. This follows by 
induction using the following lemma.

Lemma 2. Let k be a positive integer and Y ⊂  X be infinite sets of cardi-
nalities |Y| <  |X|. If F X

fin has a (k +  1) →  k monotone compression scheme 
then FY

fin has a k →  (k −  1) monotone compression scheme.

The lemma implies the theorem as follows. Assume towards a 
contradiction that there is a (k +  2) →  (k +  1) monotone compression 
scheme ηk+1 for a set of cardinality ℵ k+1. The lemma yields a (k +  1) →  k 
monotone compression scheme ηk for some set of cardinality ℵ k.  
Repeating this k +  1 times, we get a 1 →  0 monotone compression 
scheme η0 for some set of cardinality ℵ 0. This is a contradiction; no 
infinite set has a 1 →  0 monotone compression scheme.

Proof of Lemma 2. Let η be a decompression function for F X
fin such that 

for every S ⊂  X of size k +  1, there exists S′  ⊂  S of size |S′ | ≤  k such that 
η(S′ ) ⊇  S. The main observation is that the set

η= ⋃
⊂ ∣ ∣≤

Z T( )
T Y T k:

has the same cardinality as Y. This holds since Y is infinite, and 
since η(T) is finite for each T. It follows that there is x ∈  X that is not 
in Z, because |X| >  |Y|. Therefore, for every T ⊂  Y of size k, the com-
pression S′  of S =  T ∪  {x} must contain x, since otherwise x ∉  η(S′ ). 
So, S′ \{x} is a subset of T of size k −  1 such that η(S′ ) ⊃  T.
We found a k →  (k −  1) compression scheme for Y. The compression 
is of the form ↦ ′T S x\ { }. The decompression is obtained by applying 
η and taking the intersection of the outcome with Y.

No general dimension for learning
Here we discuss the existence of a dimension-like quantity that cap-
tures learnability. All the notions of dimension described in section 
‘Dimensions for learning’ can be abstracted as functions D that map a 
class of functions F  to N∪ ∞{ } and satisfy the following requirements:

 1. Characterizes learnability: A class F  is learnable if and only if 
FD( ) is finite.

 2. Of finite character: For every N∈d  and class F , the statement 
F ≥D d( )  can be demonstrated by a finite set of domain points 

and a finite collection of members of F .

When it comes to EMX learnability, we have seen that both 
the size of a monotone compression for F  and the sample size for 
(1/3, 1/3)-learnability of F  satisfy the first requirement (Lemma 1).  
However, we now show that no such notion of dimension can 
both characterize EMX learnability and satisfy the finite char-
acter requirement. This can be interpreted as saying that there is 
no effective notion of dimension that characterizes learnability in  
full generality.

Let X , Y  be variables. A property is a formula A X Y( , )  with the 
two free variables X , Y . A bounded formula ϕ is a first-order for-
mula in which all the quantifiers are of the form ∃ x ∈  X , ∀ x ∈  X  or 
∃ y ∈  Y , ∀ y ∈  Y .

Definition 4 (finite character). A property A X Y( , )  is a finite char-
acter property if there exists a bounded formula ϕ X Y( , )  so that ZFC 
proves that A and ϕ are equivalent.

We think of X  as corresponding to the domain X and Y  as cor-
responding to the class F . The intuition is that a finite character 
property can be checked by probing finitely many elements of X  
and F .

For every integer d, the property ‘VC dimension F ≥ d( ) ’ is a 
finite character property. It can be expressed using only existential 
quantification into X and F . Recall that PAC learnability is charac-
terized by VC dimension.

Theorem. For every integer d, there exists integers m, M so that for 
every set X and family F  of subsets of X, the following holds2,4:

•	 If VC dimension F ≤ d( )  then the sample complexity of (1/3, 1/3)-
PAC learning F  is at most M.

•	 If VC dimension F > d( )  then the sample complexity of (1/3, 1/3)-
PAC learning F  is at least m.

The integers m, M tend to ∞ as d tends to ∞.

On the other hand, we have seen that EMX learnability is deeply 
related to cardinalities. As a corollary, we obtain the following  
theorem.
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Theorem. There is some constant c >  0 so that the following holds. As-
suming ZFC is consistent, there is no finite character property A so that 
for some integers m, M >  c for every set X and family of subsets F  of X, 
the following holds:

•	 If FA X( , ) is true then the sample complexity of (1/3, 1/3)-EMX 
learning F  is at most M.

•	 If FA X( , ) is false then the sample complexity of (1/3, 1/3)-EMX 
learning F  is at least m.

The theorem follows from the connection between EMX learn-
ability and cardinalities. It is based on known constructions of two 
models as discussed in the section ‘Monotone compressions and 
cardinalities’. In one model, F * is EMX learnable. In the second 
world, F * is not EMX learnable. The final crucial point is that the 
truth value of every finite character property must be the same in 
both models.

Conclusion
The main result of this work is that the learnability of the family of 
sets F * over the class of probability distributions P* is undecidable. 
While learning F * over P* may not be directly related to practi-
cal machine learning applications, the result demonstrates that 
the notion of learnability is vulnerable. In some general yet simple 
learning frameworks there is no effective characterization of learn-
ability. In other words, when trying to understand learnability, it is 
important to pay close attention to the mathematical formalism we 
choose to use.

How come learnability can neither be proved nor refuted? A 
closer look reveals that the source of the problem is in defining 
learnability as the existence of a learning function rather than the 
existence of a learning algorithm. In contrast with the existence of 
algorithms, the existence of functions over infinite domains is a 
(logically) subtle issue.

The advantages of the current standard definitions (that use the 
language of functions) is that they separate the statistical or infor-
mation-theoretic issues from any computational considerations. 
This choice plays a role in the fundamental characterization of PAC 
learnability by the VC dimension. Our work shows that this set-
theoretic view of learnability has a high cost when it comes to more 
general types of learning.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.
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